Möbius transformations are conformal (i.e., angle-preserving), orientation-preserving, area-preserving isometries in the upper half-plane model of hyperbolic space. It piqued my interest to discover that the form of the metric in this model (which I discussed in Hyperbolic Geometry Note #1) is specifically chosen to ensure that Möbius transformations are indeed isometries. It turns out that in metric spaces one can sometimes `fiddle’ with the form of the metric in order to obtain geometries with particular properties, and the upper half-plane model is an example of this. In this note I want to explore in detail how this `fiddling’ with the metric works.
For , a Möbius transformation would take the form
where the coefficients ,
,
, and
are real numbers satisfying the condition
. This is an isometry in
(if one uses the metric discussed in my previous note) because it preserves lengths, i.e., for distinct
we have
I want to first prove this in detail before going on to show how the form of the metric guarantees that this result will hold. To prove the isometry property we note that if is a path from
to
then
is a path from
to
. The shortest such path (whose length would by definition be the hyperbolic distance between the two points) must also be of this form, so all we need to prove is that
where (as discussed in my previous note) the hyperbolic length of a path is obtained by integrating the function
along
, so
We need two auxiliary results concerning Möbius transformations, namely, expressions for and
. For any
we have
and if we write we have
Using these two results and the chain rule we obtain
which proves the isometry result.
It turns out that if we want this isometry result to hold, we must define the hyperbolic length using the function as above. To see why this is the case, let
be a continuous positive function. Define the
-length of a path
in the usual way to be
Now suppose that is invariant under Möbius transformations of
, i.e., if
is a Möbius transformation we have
On the left hand side we have
while on the right hand side we have
These two expressions can only be (identically) equal if for all we have
Writing , we can express this condition on the function
as
Now suppose we take in this last equation, with
any real number and
. We get
or
This shows that the real part of the argument of does not matter, because (for example) we can set
and get
We deduce that depends only on the imaginary part of
, so we can write
Now suppose we take with
in the equation
We get
which (since depends only on the imaginary part of its argument) we can write as
This equation can only hold for all in the upper half plane if on the left hand side we have
and on the right hand side we have
where is some positive constant. Therefore we see that if Möbius transformations of
are to be isometries, it must be the case that the function used in calculations of distances between points in
must be (up to a normalising constant
) the reciprocal
.
It is this result that really characterises the upper half-plane model of hyperbolic space, leading to the result that the geodesics in the upper half plane are either vertical lines or semicircles with endpoints on the real axis. The reasoning (in brief) is as follows.
It can easily be shown that the imaginary axis in is a geodesic: any path joining two distinct points
and
has a hyperbolic length greater than or equal to
, with equality to
only when the path is a straight line along the imaginary axis. It can also easily be shown that a path can be found between any two points in
which is either a vertical line or a semicircle with endpoints on the real axis, and that both of these can be mapped bijectively to the imaginary axis by a suitable Möbius transformation. (This Möbius transformation is either a simple translation if the path between the two points is a vertical line, or a transformation of the form
if the path is a semicircle with real endpoints ). Since Möbius transformations are isometries, this must mean that such vertical lines and semicircles are also geodesics. It can finally be shown that there are no other such paths in
, so the Poincaré half-plane model of hyperbolic space is characterised by the fact that geodesics in
are either vertical lines or semicircles with endpoints on the real axis.